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Summary 

The development of the wake flowfield behind a symmetric cascade of finite-thickness flat plates in steady 
two-dimensional laminar incompressible flow is investigated for a wide range of Reynolds number. A spectral 
method is used to obtain the solution to a low-Reynolds-number expansion of the Navier-Stokes equations as 
well as a second approximation to the Oseen equations. Comparisons to the results of the second Oseen 
approximation are made with previously obtained solutions to the slender-channel equations for large Reynolds 
number as well as with solutions to the low-Reynolds-number expansion. 

1. Introduction 

There has been much recent interest in the study of steady two-dimensional laminar 
incompressible separated flows with closed streamlines. For  the most part, fundamental  
studies consider relatively simple geometries such as occur in wake and channel flows and 
are concerned with the solution of equations which approximate the Navier-Stokes 
equations for various Reynolds-number limits. In the limit of small Reynolds number, the 
Stokes and Oseen equations are often studied. In the large-Reynolds-number limit, the 
boundary-layer-like slender-channel equations (Williams [1]) as well as the Oseen equa- 
tions are considered. 

For the problem of wake flows at low Reynolds number, Viviand and Berger [2] 
calculated the wake development behind a blunt-based body with the use of a Fourier-in- 
tegral solution of the Stokes equations. In order to obtain a qualitative estimate of the 
effect of the neglected inertia terms on the flowfield, the same technique was used to solve 
the Oseen equations. The Oseen equations (the Navier-Stokes equations linearized about 
the free-stream velocity) have also been used to study far-wake flows for a wide range of 
Reynolds number  (see Berger [3]). Plotkin [4] used a Fourier-series spectral method to 
calculate the Stokes flow behind a cascade of finite-thickness flat plates and obtained 
results qualitatively similar to those in [2]. 

Plotkin [3] also used the Fourier-series spectral method to solve the slender-channel 
equations for the large-Reynolds-number flow behind a cascade of finite-thickness flat 
plates. The wake flows studied in [2-5] exhibit characteristics similar to those found in the 
flow through a sudden expansion in a channel, especially at large Reynolds number. 
Spectral-method solutions to the slender-channel equations for the sudden expansion are 
given in Kumar  and Yajnik [6] and Plotkin [7] and the Oseen-equation solution for this 
geometry is given by Ramakrishnan and Shankar [8]. 
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In this study, the development of the wake flowfield behind a symmetric cascade of 
finite-thickness flat plates in steady two-dimensional laminar incompressible flow is 
investigated for a wide range of Reynolds number. It is the goal of the research to obtain 
an accurate low-Reynolds-number solution to the Navier-Stokes equations as well as to 
explore the validity of the second approximation to the Oseen equations for both small 
and large Reynolds number. 

2. Problem formulation and method of solution 

Consider the steady two-dimensional laminar incompressible flow past a symmetric 
cascade of finite-thickness flat plates as shown in Fig. 1. Lengths have been normalized by 
half the plate separation distance and velocities by the stream velocity; h is the ratio of 
plate thickness to plate separation. It is intended to calculate the development of the wake 
from the base of the plate to downstream infinity. 

The Navier-Stokes equation in stream-function form is 

(1) 

where ~k is the stream function, R is the Reynolds number based on half the plate 
separation distance and the stream velocity, and V 2 and V 4 are the Laplace and 
biharmonic operators. If u and o are the velocity components in the x and y-directions, 
the stream function is given by u = ~ky and v = -~kx. 

In general, boundary conditions would be specified far upstream of the base, where the 
flow is assumed to be fully developed. Here, velocity profiles will be assumed at the base 
and the wake development will be sought. The solutions obtained will be valid for 
arbitrary initial profiles. For initial velocity profiles of uo(y ) and vo(y ) and for no 
disturbance far downstream, the following boundary conditions are obtained: 

q,(O, y )=~uo(y )dy ,  (2a) 

y)= (2b) 

y--l 
2 

FZ///////,;'/A -- u I 

I 

- -  y=-l 

Figure I. Flow configuration and coordinate system. 



q~(oo, y ) = y  and ~px(OO, y ) = O .  

The transverse boundaries are symmetry boundaries with 

+1)= +_1, 

~yy(X, q- 1) = 0. 
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(2c) 

(2d) 

(2e) 

Since the transverse boundary conditions are periodic, a spectral Fourier-series expan- 
sion (as used in Plotkin [4,5]) is taken which identically satisfies equations (2d) and (2e): 

N 

~/=y + ~_,a,(x) sin Eny. (3) 
1 

The series is truncated after N terms and E n = n~r. The series is substituted into 
equation (1) and after the result is multiplied by sin Emy and integrated from y = - 1 to 
y = + 1, the following set of coupled nonlinear ordinary differential equations is obtained 

Note that 

a , , ,  Ra,~" ~ 2  . 4 . . . . . .  zt~y.,a., + RE,  a" + E~,a,,, 

- R E  E [Cm,sa" as + Dm,s(a~a;" - a',a'~')] = 0. (4) 
n $ 

where 

and 

Inn s = 2folcos E~y sin E.y sin E,,,yd y 

1 /2  
I,..~= - 1 / 2  

0 

s = n - m ,  m - n ,  
s = n + m ,  
otherwise. 

The initial conditions, equations (2a) and (2b), are satisfied if 

and 

a,n(O)=-~ foluo(y)cosm~'ydy 

a "  (0) = - 2folV o ( y )  sin m~rydy. 

(5a) 

(5b) 

(5c) 

(5d) 

(6a) 

(6b) 
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The uniform stream is recovered at infinity so that 

am(m) = a~,(m) = 0. (6c) 

2.1. Low-Reynolds-number expansion 

Consider the limit of the foregoing problem for small values of the Reynolds number. 
Assume an expansion in Reynolds number in the following form: 

am = am, + Ram2 + O ( R 2 )  • (7) 

The function a,. 1 is the solution of the Stokes-flow (R = 0) problem 

a ' "  ,~ r~ 2 tt 4 
m, - -  Z:Lmam, + E~nam, = O, (8a) 

am,(0) = am(0), a~,,(0) = a ' ( 0 ) ,  (8b) 

am,Coo ) = a ~ , ( ~ )  = O, (8c) 

and is given in Plotkin [4] as 

a , . r =  (Am, + xBm,) e -Emx (9a) 

with 

Am, = am (0), 

Bm, = m~ram(O ) + a',,(0). 

The function am= satisfies the following mathematical problem: 

a""  - - ~ 2  tt E4mam2 = a " 2 t ~'l:5mam2 + -- Emara,  + E E [ CmnsaPn,asl m 2 m, 
n $ 

( . . . . . .  )] 
+ Dm,s as,an, - anas,  , 

am2(0 ) = a~,2(0 ) = 0, 

am2(~)=a 'm2(¢~)=O.  

(9b) 

(9c) 

(lOa) 

(10b) 

(10c) 

The solution for a,.2 may be written as 

a,, ,:(x) = b,,,:(x) + dm=(X ) (11) 

where b,.= and d,.2 are the homogeneous and particular solutions, respectively, b,.: 
satisfies equation (8a) and is 

b.,=(x) = (Am= + B~=x) e -e"x .  (12) 
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The particular solution satisfies equation (10a) and with the use of equation (9a), the 
differential equation becomes 

d . . . . .  9- F.2d'' + E4dm2 = 2Bml E2 e -e-x m 2 ----m~m 2 

+ 2 2  E { I,,,,,.Es( EZB,,1As~- E,E,,B,1A,,~+ E.B.B.~) 
n $ 

+ I m . . E : . ( E .  - E.) a.,B.,x} e -~Eo+~'~x. (13) 

Equation (13) can be solved using the operator method [9] and the solution is 

N e-(2En-E~)x  
dm2(X)  = x2  e - E ' x  + E 

n=m+l  ( 4 I n ( I n - E r a ) )  2 

E ~ . S . B .  ,., - e . e ~ .  , . A . s .  ,.1 x ( [ E °  + _ _ _ ] 

N - m  e-(2E.+E,,,) x 

+ e..E.eo_ B. B._m x} - 2 
n = l  (4E.(E.  + Era))  2 

-E.E, .E.+.,B.B.+mX} +-g-~2 e-E'~ E 
8 f z  n=l  

E,,,_. 2 A ] + - -G-- (E2_.  + E.~)B. 8m_.~- E.e~_.B~_.~ .1 

+ }E.E,,,_,,(2E,, - Em)B.B,,,_,,1x } . (14) 

The constants A,~ and B.,~ in equation (12) can now be obtained by satisfying the initial 
conditions in equation (10b) with the use of equations (11), (12) and (14). They are 

.4m2 = -d in2 (0 ) ,  

Bin:  = _ E m d ' m 2 ( O )  - din2(0 ) . 

2.2. Oseen equations 

The Oseen equations (the Navier-Stokes equations 

(15a) 

(15b) 

linearized about the free-stream 
velocity) can be used to obtain a qualitative description of the flowfield for a wide range 
of Reynolds numbers. The approximation can be expected to give its best results when the 
Reynolds number is small or when the solution is being sought far from a solid body or in 
a far wake where the disturbance to the uniform stream is small. In the low-velocity 
recirculation zone of a near-wake-region the approximation is expected to be poor. 
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The Oseen approximation to the Navier-Stokes equation (1) is 

(V2 -- R ~-~)V2~ = 0, (16) 

and the corresponding equivalent of equation (4) is 

a "  - R a "  - 2 E 2 a ~  + R E E a "  + E4am = 0. (17) 

The solution for the cascade (or baffle as it is called in [8]) is discussed in [5] and [8] and is 

am(X ) = A m e -Emx + n m e -e=x (lSa) 

with 

Satisfaction'of the initial conditions of equations (2a) and (2b) yields 

A m = [Fmam(O ) + a ' ( O ) ] / ( F  m - Era). (18c) 

B m = - [Emam(O ) + a m ( O ) ] / ( F  m - Era). (18d) 

3.4. Oseen equations: second approximation 

The Oseen equations neglect completely the nonlinear terms in the Navier-Stokes 
equations (4). To improve the solution, we proceed along the lines of the solution 
technique for the low-Reynolds-number expansion. An iterative solution is sought of the 
form 

am(X ) = am,(X ) + am2(X ) + . . .  (19) 

where now the function am~(x)is  the solution to the Oseen equations (17). In this section, 
therefore, 

a m , ( x ) = A m  e-E"X + Bm e -F"x, (20) 

and Am1 and Bin1 are the same a s  A m and Bm in equations (18c) and (18d). In the second 
approximation, aml(X ) is used to approximate the nonlinear terms in the Navier-Stokes 
equations (4). 

The function am2 satisfies the following mathematical problem: 

a'"' Ra , , t  2 , ,  _ _ 2Emam2 + RE2ma'm2 + Emam= m 2 m 2  

D (a a ' "  a .  as,)] (21a) = R E E [ c m . s a ; , a . , +  too*, *, o,  . . . .  • 
/'I s 



a"2(0 ) = a~,2(0 ) = 0, 

a"2(e¢) = a~,2(oo) = 0. 

The solution for a":  may be written as 

a " & )  = b " & )  + d"~(x) 

where b" 2 and d":  are the homogeneous and particular solutions, 
satisfies equation (17) and is 

b " 2 ( x ) = A m 2 e - E ' X  + B"  e -F~x. 
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(21b) 

(21c) 

(22) 

respectively, b" 2 

(23) 

The particular solution satisfies equation (21a). With the use of equation (20), the 
differential equation (21a) may be written 

2 , + E4d"~ d,.2 .... - Rd"2" - ---"-"22 E 2 d" + RE2,d"~ 

= R  E Y'~ [H" . .  exp ( -X . ,  x) + H " , , . e x p ( - h , , . x ) +  H"..3 exp(-~.~3x)] (24a) 
n s 

where 

-Fg)F.&A.,, 

H " . .  = 

H".s3= I,...E.( E 2- + F 2)F,,B,,1B i 

and 

~..~ =F~ +Es,  X , , s 2 = F . + E . ,  X..3 = F~ + F~. 

With the use of the operator method [9], the solution is obtained as 

3 

d " ~ ( x ) = R E  E Y'~ H,,,,,s~ e x p ( - X , , , j x ) / Q ( X . , , )  
n s j = l  

where 

Q(A) = h  4 + RA 3 -  2E~A 2 -  REZ~A + E 4. 

(24b) 

(24 ) 

(25a) 

(25h) 

The constants A" 2 and B"~ in equation (23) can now be obtained by satisfying the initial 
conditions in equation (21b). With the use of equations (22), (23) and (25), we have 

Am 2 = [ -  F"d"2(O) - d" (0 ) ] / (F"  - E") ,  (26a) 

B": = [ E"d":(0)  + dm:(O)] / (F" - Era). (26b) 
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2.4. Slender-channel equations 

In the interest of completeness, the large-Reynolds-number equations used in [5] will also 
be described. Except in the immediate neighborhood of the base, it is assumed that the 
streamwise length scale is of order R and the transverse length scale is of order one. If the 
contracted streamwise coordinate X =  x / R  is used, the Navier-Stokes equation (1) 
becomes 

~)yyyy = ~ y l ~ y y X  --  I ~ X ~ y y y  + R - 2  [ l ~ y l l l x x x  - ~ X ~ y X X  - 2q, yyXX] - R-4q, xxxx (27) 

and in the large-Reynolds-number limit, the slender-channel equations are 

l~yyyy = lll y l~yy  X --  ~ X + y y y "  (28) 

This is seen to be the Prandtl boundary-layer equation with different scaling and here 
applies to a fully viscous flow whose pressure gradient is unknown in advance. 

The equivalent of equation (4) becomes 

E~a~ + Ea a,. = E E Cm.sa; as (29) 
n $ 

where the prime denotes differentiation with respect to X. Note that the differential 
equation is now first order in X and it is solved numerically as an initial-value problem 
with the initial condition of equation (6a). 

3. Results and discussion 

Strictly speaking, the mathematical problem represented by the ordinary differential 
equation set (4) with the boundary conditions of equation (6) is the development of the 
laminar wake downstream of an initial station (the base plane). The flow configuration 
upstream of this initial station enters the problem through the choice of the base-plane 
velocity field and it is noted that the solutions presented here are valid for an arbitrary 
choice of this velocity field. 

In what follows, calculations will be presented for an assumed reasonable base-plane 
velocity field which is compatible with the finite thickness flat plate cascade geometry. The 
choice of an appropriate initial-velocity field is guided by the analysis of Viviand and 
Berger [2] for low Reynolds number and by the analysis of Plotkin [5] for large Reynolds 
number. 

The flow upstream of the base is taken to be fully developed and the complete wake 
flow-field for this confined geometry is fully viscous. The streamwise component of 
velocity at the base is taken to be the Poiseuille parabolic profile, 

(?Iy  u0(y)  = - h  
l [ y - h ]  2] h<~y<<.l, 
2 \ 1 ---:-h ] ] (30a) 

O<<.y<h 

and Uo(-y ) = uo(y). In general, vo(y ) ~ 0 due to the upstream influence of the base. 
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Viviand and Berger [2] suggest a choice such that vo(h ) = v0(1)= 0, Vo(-y  ) = - v 0 ( y  ), 
and either v 0 ~< 0 or v 0 >t 0 for h ~< y ~< 1. The following parabolic profile is chosen 

vo(y)  = 1 ( l _ - h )  2 y - - - ~  h<~y<~l, 

O <~ y <~ h. 

(30b) 

Substitution of equations (30) into equations (6a) and (6b) gives the following initial 
values 

am(0) = 6 [sin mrrh + mlr(1 - h) cos rn~'h] (31a) 
~r4m4(h - 1) 3 

a ' ( 0 )  = 
Ir3m3(1 -- h) 2 

[2 cos rnrrh - 2 cos m,r + m~r(h - 1) sin m*rh]. (31b) 

Four different sets of equations have been presented in this study. First, a low-Re- 
ynolds-number expansion of the Navier-Stokes equations has been obtained which retains 
terms linear in R. When the Reynolds number is low, say less than 0.5, the results from 
this approximation should be quite accurate. The second and third sets of equations are 
the linear Oseen equations and their second approximation. These equations have the 
potential to provide a description of the flowfield over a wide range of Reynolds numbers. 
Fourth, the slender-channel equations are a large-Reynolds-number approximation to the 
Navier-Stokes equations. The ability of these parabolic equations to adequately represent 
flowfields which contain recirculation regions is still an open question. 

Consider first the low-Reynolds-number regime. In the limit of zero-Reynolds-number, 
the solutions to the low-Reynolds-number expansion, linear Oseen equations and second 
Oseen approximation all approach the Stokes-flow result [4]. In this limit, it was found 
that a recirculation region only appeared behind the base for Vr, > 0. In this study, V m = O, 
0.2 and h = 0.5 are chosen as typical values. 

u c X lO 3 , 

3 

2 

LOW REYNOLDS NUMBER 
EXPANSION 

- - - -  L I N E A R  OSEEN 

. . . . . .  SECOND OSEEN 
APPROXIMATION R=O.I 

/R=O'3 

0.04 ~ Z  , _/..atve.." ..~ v,.iv X 

0 I 
Figure 2. Comparison of wake center-line velocity (h = 0.5, V,. = 0.2 and R = 0.1 and 0.3). 
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X r 

0,20 

0.15 

o, lo 

0,05 

LOW REYNOLDS 
NUMBER EXPANSION 

- - ' - -  LINEAR OSEEN 

. . . . .  SECOND OSEEN 
APPROXIMATION 

o 0'.2 0',4 0',6 i'.o  
Figure 3. Comparison of length of recirculation region (h = 0.5 and V,, = 0.2). 

Upon  examination of the results for the second Oseen approximation as given by 
equation (25), it was discovered that for R < 0.8 and for x within the recirculation region, 
oscillations in the solution were encountered in the streamwise direction after the series 
had reached convergence. This behavior was traced to the terms in the summation when 
n + s = rn and the problem was resolved by taking appropriate expansions of the exponen- 
tial functions for small x and R (see Appendix for the details). The corrected results are 
used when R < 0.8. 

Comparisons between the solutions to the low-Reynolds-number-expansion, linear 
Oseen equations and second Oseen approximation are displayed in Figs. 2-4.  In Figs. 2 
and 3, the wake center-line velocity u c and length of the recirculation region x r are given, 
respectively, as functions of Reynolds number  for h = 0.5 and Vm = 0.2. Good  agreement 
is noted between the low-Reynolds-numbers expansion and the second Oseen approxima- 
tion. The ability of the linear Oseen solution to provide a quantitative description of the 
flow worsens rapidly with Reynolds number increasing from zero. In Fig. 4, the streamline 
boundary of the recirculation region (~k = 0) is given for h = 0.5, Vm = 0 and R = 0.3. 
Again the good agreement between the two nonlinear solutions is seen. In Fig. 5 the 
streamline pattern obtained from the low-Reynolds-number expansion is shown for 
h = 0.5, Vm = 0 and R = 0.3. The ~b = 0 streamline from the low-Reynolds-number expan- 
sion is shown as a function of Reynolds number for h = 0.5 and Vm = 0.2 in Fig. 6. 

LOW REYNOLDS 
NUMBER EXPANSION 

- - - - -  L INEAR OSEEN 
Y 

O= ___ SECOND OSEEN 
;4 ~ R O X I M A T I O N  

Io., i 
0 0.01 0,02 0.03 0£)4 0.05 X 

Figure 4. Comparison of recirculation region boundary (h  = 0.5, V,, = 0 and R = 0.3). 



Y i0 -I 

0.6 

0.4 

0.2 
O.I 5 

O O.OI 0.02 O.03 0.04 0.05 0,06 x 

Figure 5. Streamline pattern for low-Reynolds-number expansion (h = 0.5, V,, = 0 and R = 0.3). 
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Let us now consider a comparison between the solutions of the linear Oseen equations, 
second Oseen approximation and the slender-channel equations in the large-Reynolds- 
number  limit. In Plotkin [5], it was shown that the number  of terms in the Fourier-series 
solution to the slender-channel equations that could be obtained increased as h ap- 
proached zero. For h = 0.2, an eight-term solution with reasonable convergence properties 
was found although its accuracy is unconfirmed. In Fig. 7 the wake center-line velocity is 
compared for R = 1000. Close agreement is obtained for x r between the slender-channel 
equations and second Oseen approximation but this agreement may be fortuitous. A more 
meaningful comparison is provided in Fig. 8 which compares the wake center-line velocity 
for h = 0, a cascade of zero-thickness flat plates. This example has no recirculation region 
so that the slender-channel equations should yield a valid solution. The agreement 
between the solution to the second Oseen approximation for R = 10,000 and the slender- 
channel equations is quite encouraging. 

It  is seen in the results of Fig. 8 for the second Oseen approximation, in Plotkin [5] for 
the linear Oseen solution, and in the results of Ramakrishnan and Shankar [8] for the 
linear Oseen solution for the channel expansion that these equations have a large-Re- 
ynolds-number limit which exhibits the proper streamwise scaling. The large-Reynolds- 
number  limit of the second Oseen approximation is explored further in Figs. 9 and 10. In 

0.5 

0.3 

I 
0,1 

0 0.04 

In 

I: R=O 
IT: R=O.I 

TIT: R=0.3 
I~: R=0.5 

068 o.12 ;, 
Figure 6. Recirculation region boundary (1/, = 0) for low-Reynolds-number expansion (h = 0.5 and V,, = 0.2). 
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8 

6 

4 

2 

0 

-2 

-4 

-6 

-8 

u©xlO 2 
SLENDER 

- - C H A N N E L  EQUATIONS 

- - - - - L I N E A R  OSEEN 

. . . .  SECOND OSEEN 
APPROXIMATION 

/ 
/ 

/ 
/ /  

~ , T  " " "  ()'~00 4 j~O08 0.012 

~'% ~. ,,,. __ .,,.~J' 

x/R 

Figure 7. Comparison of large-Reynolds-number wake center-line velocity (h = 0.2, V,~ = 0 and R = 1000). 

Fig. 9, the @ = 0 streamline for Vm = 0 and h = 0.2 is plotted versus x/R for R = 10" and 
n = 0-4.  I t  is noted that in the large-Reynolds-number limit the ~ = 0 streamline becomes 
concave to the flow. In [8] this streamline is concave for all Reynolds numbers. In Fig. 10, 
the wake centerline velocity for Vm -- 0 and h = 0.2 is plotted versus x/R for R = 10" and 

uc 
0.5 

0.4 

0.3 

0.2 

0.1 

SLENDER CHANNEL EQUATIONS 
. . . .  SECOND OSEEN APPOXMATION (R=IO 4) 
. . . .  SECOND OSEEN APPOXMATION (R = I0 ~) 
- - ' -  LINEAR OSEEN 

~ , . ¢ . . ~ -  ~ . ~ ' ~  
~ ' ~ r ~ '  . ~ . ~ ' ~ -  

f ~ ' ~ ' ~  

0,C)4 O.()B 0,12 ~/R 
Figure 8. Comparison of large-Reynolds-number wake center-line velocity (h = 0, V,, = 0). 



0.1 

0 0.01 0.02 
I 

0.03 x /R  
Figure 9. Recirculation region boundary for second Oseen approximation (h = 0.2 and V m = 0). 
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n = 1-4  It is seen that the maximum reverse flow velocity reaches a maximum at an 
intermediate Reynolds number, a result also seen by Viviand and Berger [2]. The 
large-Reynolds-number limit of the second Oseen approximation is effectively reached 
when R = 1000. 

The observation that x scales with R for the second Oseen approximation at large 
Reynolds number can also be made with an examination of the solution in equation (25). 
As R ~ o0 the following limits hold: 

_ 2 - 1  F , . - E : , R  , 

~ . ~ , -  0 (1 ) ,  ~ . ~ =  0 (1 ) ,  X.~ 3= O(R-1), 

Hmns,=O(R-2) ,  Hmns2 = O ( R - 1 ) ,  Hmns3 = O ( R - ] ) ,  

Q(~.~,)=O(R), Q(Z.~2)=O(R), Q(~..~3)=O(1). 

The dominant terms in the expansion for dm2(X ) as R ~ o0 are therefore of the form 
e x p ( -  aX) where a is O(1) and X = x/R. 

R=IO 

. . . .  R=IO 2 
UcX I02 

6 - - . ~  R=IO 3 

5 
4 . . . .  R=I04 

3 

2 
I 

0 

/ /  / 
0.00,5/ / 0.0!5 //" 0.9a5 

\ ]  

Figure 10. Wake center-line velocity for second Oseen approximation (h  = 0.2 and V m = 0). 
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The linear Oseen solution is seen to underpredict the length of the recirculation zone in 
both the small and large-Reynolds-number limits. The second Oseen approximation is 
seen to provide results which agree well with the accurate low-Reynolds-number expan- 
sion at low Reynolds number and with the slender-channel equations at large Reynolds 
number. The second Oseen approximation predicts a streamwise length scale of the 
Reynolds number in the large-Reynolds-number limit (this limit appears to be applicable 
for Reynolds number greater than approximately 1000). It is speculated that the second 
Oseen approximation should provide reasonable results for the complete Reynolds-num- 
ber range. 

4. N u m e r i c a l  N a v i e r - S t o k e s  so lut ion  

After the above analyses were completed an independent numerical solution of the 
complete Navier-Stokes equations for the present flow using a semi-implicit single-step 
finite-difference scheme with second-order accuracy [10] was obtained for low and 
moderate Reynolds number. The initial (Poiseuille) profiles are properly enforced far 
upstream of the base so that the correct values of uo(y ) and vo(y ) can be calculated as 
part of the solution. 

A typical calculation for uo(y) and vo(y ) is shown in Fig. l l a ,  b and compared to the 
assumed profiles from equations (30 a, b). The value of V m is chosen equal to the 
maximum value of the computed transverse component of the initial profile. It is found 
that Uo(y ) is relatively insensitive to Reynolds number and that the assumed profile is 
quite reasonable. The transverse component vo(y ) is seen to differ from its assumed 
parabolic shape. However, when V, from the numerical solution is used in equation (30b), 
the second Oseen approximation compares quite well with the Navier-Stokes solution for 
moderate Reynolds number. This is seen in Fig. 12 where the lengths of the recirculation 
region from the two calculations are compared. 
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Figure 11. Comparison of initial profiles ( - -  assumed; -- -- -- 
(a) streamwise component and (b) transverse component). 

Navier-Stokes calculation; R = 5, h = 0.5) 
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Figure 12. Comparison of length of recirculation region (h = 0.5). 
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The variation of the calculated value of Vm with Reynolds number is shown in Fig. 13. 
It is seen that V,, is negative and decreases in magnitude with increasing Reynolds 
number. It appears that Vm is approaching zero as R increases (Vm = -0 .05  at R -- 50 
and h = 0.5) and therefore the choice of V m = 0 for large Reynolds number seems 
reasonable. 

As the Reynolds number approaches zero, both the numerical and analytical results in 
Fig. 12 suggest the existence of a critical Reynolds number below which no recirculation 
region occurs. However, the two solutions disagree in this range. This may be due to the 
choice of the initial profile oo(y ). 
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Appendix 

The differential equation and solution for d,,~ for the second Oseen approximation are 
given in equations (24) and (25) as 

3 

d,.2 . . . . .  Rd'",.2 --")-F'2rltt---m--m2 + RE2d'2 + E4d": =Ry '~- ,  ~, Hm.~j exp(-X.~ x)  (Ala) 

where 

x.~, = V. + E. ,  

n s j = l  

X . , = F , + E . ,  X . , 3 = F . + F  s, 

d, , ,2 (x)=RE E E H,,,.sj exp(-X,,~jx)/Q(X,,s) 
n s j = l  

where 

Q(X) = X 4 + R X  3 - 2E2X 2 - RE2X + E 4. 

(Alb) 

(A2a) 

(A2b) 

When R--* 0, consider the contribution to the solution (A2a) when n + s = m. In this 
limit, 

Fm= E m -  R /2  + O( R 2) 

~.sl = E,. - R / 2  + O(R 2) 

X,,,~ = E,n - R /2  + O( R 2) (A3) 

x.~ 3 =em - R + O(R 2) 

and, after substitution into equation (A2b), it is seen that Q ( h ) =  O(R4). This leads to 
streamwise oscillations in the solution (A2a) within the recirculation region. 

The root of this problem lies in the exponential terms in the differential equation (Ala). 
It can be corrected by applying a consistent small R approximation to these terms. Define 

#1 = En - F., r2 = E~ - F s, (A4) 
/~3 = e . -  F. + e ~ -  r~ 

and note fli = O(R). When n + s -- m, 

exp ( -X . s lX )=exp ( -Emx  ) exp( f l l x )=exp( -Emx)[1  + B1 x + O ( • 1 x ) 2 ]  . (A5) 

Similarly, 

exp( -X .~2x)=exp( -E . . x ) [1  + f12 x + O ( f l 2 x ) 2 ]  , 

e x p ( - X . , x ) = e x p ( - E m x ) [ 1  + f13 x -I- O ( f 1 3 x ) 2 ]  . 
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Equa t ion  (A5) is subs t i tu ted  into  equa t ion  (A1) for n + s = m and,  if on ly  the l inear  terms 
in the  expans ion  are  kept ,  use of  the ope ra to r  me thod  leads  to the con t r i bu t ion  to din2 of 

dm2( x ) = - x e x p ( -  Emx ) 3 
2E~ E E  Y'~Hmnsj[l +~Xlflj+½fljx] (A6a)  

n s j = l  

n + s = m  

where  

a, = (4E m + 3 R ) / 2 R E  m. 

F o r  R < 0.8, the solut ion f o r  dm2 that  is used is 

3 
d . , ~ ( x ) = R  E E  Z Hm.~jexp( -X .~ jx ) /Q(X.~ j )+dm~(X) .  

n s j = l  

n + s 4 - m  

(A6b)  

(A7) 

Fur the r  analysis  shows that  neglect  of  the quad ra t i c  terms in the  expans ion  of the  
exponen t ia l s  in equa t ion  (A5) leads  to errors  of  o rde r  

O [ ( R 4 x  2 %- R4x 3) e x p ( - E m x ) ]  

so that  use of  the  l inear  terms a lone  is jus t i f i ed  for  the comple te  range of  x. 
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